Sample Paper

Time: 90 Minutes Max. Marks: 35

General Instructions

- 1. The Question Paper contains three sections.
- 2. Section A has 25 questions. Attempt any 20 questions.
- 3. Section B has 24 questions. Attempt any 20 questions.
- 4. Section C has 6 questions. Attempt any 5 questions.
- 5. All questions carry equal marks.
- 6. There is no negative marking.

SECTION-A

This section consists of 25 multiple choice questions with overall choice to attempt **any 20** questions. In case more than desirable number of questions are attempted, ONLY first 20 will be considered for evaluation.

1.	Which of the following exists as covalent crystals in	the solid	state?						
	(a) Iodine (b) Silicon	(c)	Sulphur	(d)	Phosphorus				
2.	In graphite electrons are:								
	(a) localised on each carbon atom	(b)	spread out between the s	heets					
	(c) localised on every third carbon atom	(d)	present in antibonding or	bital.					
3.	A fluorine atom (F) affects pair of an electron in a cov	alent bo	nd which is						
	(a) Weakest (b) Strongest	(c)	Neutral	(d)	Constant				
4.	A crystalline solid								
	(a) changes abruptly from solid to liquid when heat	ed (b)	has no definite melting po	oint					
	(c) undergoes deformation of its geometry easily	(d)	has an irregular 3-dimensional arrangements						
5.	An ideal solution is formed when its components								
	(a) have no volume change on mixing	(b)	have no enthalpy change	on mix	xing				
	(c) have both the above characteristics	(d)	have high solubility.						
6.	Schottky defect defines imperfection in the lattice structure	re of							
	(a) solid (b) gas	(c)	liquid	(d)	plasma				
7.	IUPAC name of $CH_3CH_2C(Br) = CH - C1$ is								
	(a) 2-bromo-1-chlorobutene	(b)	1-chloro-2-bromobutene						
	(c) 3-chloro-2-bromobutene	(d)	None of the above						
8.	Proteins are condensation polymers of								
	(a) α-amino acids (b) β-amino acids	(c)	α-hydroxy acids	(d)	β-hydroxy acids				
9.	When two halogen atoms are attached to same carbon								
	(a) <i>vic</i> -dihalide (b) <i>gem</i> -dihalide	(c)	α, ω-halide	(d)	α , β -halide				
10.	Which of the following noble gases react with fluoring		_						
	(a) Krypton (b) Xenon	(c)	Radon	(d)	All of the above				
11.	An ether is more volatile than an alcohol having the sa	ame mol							
	(a) dipolar character of ethers	(b)	alcohols having resonance structures						
	(c) inter-molecular hydrogen bonding in ethers	(d)	inter-molecular hydrogen bonding in alcohols						
12.	The space lattice of graphite is								
	(a) cubic (b) tetragonal	(c)	rhombic	(d)	hexagonal				

13.	The process of converti	ng alkyl h	alides into alcohols in	volve	S		
	(a) addition reaction		substitution reaction			(d)	rearrangement reaction
14.	Which of the following	factor do	not affect solubility of	fsolic	d solute in liquid?		
	(a) Temperature	(b) F	Pressure	(c)	Nature of solute	(d)	All of these
15.	Which of the following	has stron	gest hydrogen bondin	g?			
	(a) Ethyl amine	(b) E	Ethanal	(c)	Ethyl alcohol	(d)	Diethyl ether
16.	What is hybridization o	J	,				
	(a) sp^3	(b) s	p^3d^2	(c)	sp^3d	(d)	sp^2
17.	Which of the following	is correct	about H-bonding in n	ucleo	tide?		
	(a) A A and T T	(b) (G T and A C	(c)	A G and T C	(d)	A T and G C
18.	Ethylene dichloride can	be prepar	ed by adding HCl to				
	(a) ethane	(b) e	ethylene	(c)	acetylene	(d)	ethylene glycol
19.	Haloarenes are ortho ar	nd para dii	recting due to				
	(a) Resonance in aryl	halide		(b)	-I effect of halogen atom		
	(c) +I effect of haloge	n atom		(d)	Both (a) and (b)		
20.	On heating lead nitrate	forms oxid	les of nitrogen and lead	d. The	e oxides formed are		
	(a) N ₂ O, PbO		-	(c)	NO, PbO	(d)	NO, PbO,
21.	Which one of the follow	ving is non	n-ideal solution				2
	(a) Benzene + toluene			(b)	<i>n</i> -hexane + <i>n</i> -heptane		
	(c) Ethyl bromide + et	hyl iodide		(d)	CCl ₄ +CHCl ₃		
22.	Collectively the elemen	ts of group	15 are called –				
	(a) pnicogens	(b) p	onicopens	(c)	nicopen	(d)	None of these
23.	Insulin production and of the following categor		in human body are res	ponsi	ble for the level of diabetes	. This	compound belongs to which
	(a) A carbohydrate	(b) A	Ahormone	(c)	A co-enzyme	(d)	An antibiotic
24.	Which one of the follow	ing eleme	ents is most metallic?				
	(a) P	(b) A	As	(c)	Sb	(d)	Bi
25.	Which of the following	elements	does not show allotro	py?			
	(a) Nitrogen	(b) E	Bismuth	(c)	Antimony	(d)	Arsenic
			SEC	CTIO	N-B		
	· · · · · · · · · · · · · · · · · · ·	_	=			_	uestions. In case more that
	· · · · · · · · · · · · · · · · · · ·	T (b) GT and AC (c) AG and TC (d) AT and GC an be prepared by adding HCl to (b) ethylene (c) acetylene (d) ethylene glycol and para directing due to yl halide (b) -I effect of halogen atom gen atom (d) Both (a) and (b) te forms oxides of nitrogen and lead. The oxides formed are (b) NO ₂ , PbO (c) NO, PbO (d) NO, PbO ₂ owing is non-ideal solution ne (b) n-hexane + n-heptane ethyl iodide (d) CCl ₄ + CHCl ₃ ents of group 15 are called - (b) pnicopens (c) nicopen (d) None of these ad its action in human body are responsible for the level of diabetes. This compound belongs to which gories? (b) A hormone (c) A co-enzyme (d) An antibiotic owing elements is most metallic? (b) As (c) Sb (d) Bi ng elements does not show allotropy?					

26. Which of the following liquid pairs shows a positive deviation from Raoult's law?

(a) Water - Nitric acid

Benzene - Methanol

(c) Water - Hydrochloric acid

(d) Acetone - Chloroform

27. The vapour pressure of two liquids 'P' and 'Q' are 80 and 60 torr, respectively. The total vapour pressure of solution obtained by mixing 3 mole of P and 2 mole of Q would be

(a) 72 torr

(b) 140 torr

(c) 68 torr

(d) 20 torr

28. Arrange the following compounds in the increasing order of their densities.

(a) (i) < (ii) < (iii) < (iv) (b) (i) < (iii) < (iv) < (ii)

(iv) < (iii) < (ii) < (i)(c)

(ii) < (iv) < (iii) < (i)(d)

Sa	mple Paper-1				SP-3								
29.	Which of the following is not tetrahedral in shape?												
30.	(a) NH ₄ ⁺ (b) SiCl ₄ Primary structure of a protein is	(c)	SF_4	(d)	SO ₄ ²⁻								
	 (a) sequence in which α-amino acids are linked to one (b) sequence in which amino acids of one polypeptide (c) the folding patterns of polypeptide chains (d) the pattern in which the polypeptide chains are arranged 	chair	are joined to other chain										
31.	→Br + NaOH Solvent →OH												
	For which solvent rate of S _N 2 will be maximum?	<i>a</i> >	1000/11 0										
	(a) Benzene (c) 100% acetone	(b) (d)	$100\% \text{H}_2\text{O}$ 75% $\text{H}_2\text{O} + 25\%$ acetone										
32.	S – S bond is not present in	(u)	757011 ₂ 0 + 2570 acctone										
	(a) $S_2O_4^{2-}$ (b) $S_2O_5^{2-}$	(c)	$S_2O_3^{2-}$	(d)	$S_2O_7^{2-}$								
33.	Which of the following is not a crystalline solid?												
24	(a) KCl (b) CsCl	(c)	Glass	(d)	Rhombic S								
34.	For the compounds CH ₃ Cl, CH ₃ Br, CH ₃ I and CH ₃ F,												
	the correct order of increasing C-halogen bond length i	s:											
	(a) CH ₃ F < CH ₃ Cl < CH ₃ Br < CH ₄ I	(b)	CH ₃ F < CH ₃ Br < CH ₃ Cl < 0	CH ₃ I									
	(c) $CH_3F < CH_3I < CH_3Br < CH_3CI$	(d)	$CH_3Cl < CH_3Br < CH_3F < CH$	CH ₃ I									
35.	XeF ₆ dissolves in anhydrous HF to give a good condu	cting	solution which contains:										
	(a) H^+ and XeF_7^- ion (b) HF_2^- and XeF_5^+ ions	(c)	HXeF ₆ ⁺ and F ⁻ ions	(d)	None of these								
36.	Equal moles of water and urea are taken in a flask. Wha	at is m	ass percentage of urea in th	e solu	tion?								
	(a) 7.692% (b) 769.2%	(c)	76.92%	(d)	0.7692%								
37.	Which statement is not correct about alcohol? (a) Molecular weight of alcohol is higher than water												
	(b) Alcohol of less no. of carbon atoms is less soluble	in wa	ter than alcohol of more no.	of ca	arbon atoms								
	(c) Alcohol evaporates quickly												
38.	(d) All of the above Strong reducing behaviour of H ₃ PO ₂ is due to												
50.	(a) low oxidation state of phosphorus												
	(b) presence of two — OH groups and one P — H bond												
	(c) presence of one — OH group and two P — H bonds												
39.	(d) high electron gain enthalpy of phosphorus What is the coordination number of sodium and oxygen in Na ₂ O in which oxide ions occupy ccp arrangement and sodium												
	ions occupy all tetrahedral voids?		ungo ini winion omao ioni oo	ч	op withingoment und sounding								
	(a) 6,4 (b) 4,8	(c)	8,4	(d)	2,4								
40.	Which of the following group 15 element forms metallic (a) As (b) P	c bond (c)	ls in elemental state ? Sb	(d)	Bi								
41.	(a) As (b) P Isopropyl alcohol is obtained by reacting which of the f	\ /		` /									
	H_2O ?			2	4 8								
12	(a) Ethylene (b) Propylene	(c)	2-Methylpropene	(d)	Isoprene								
42.	Which of the following cannot be made by using Willia (a) Methoxybenzene	amson (b)	s synthesis? Benzyl p-nitrophenyl ethe	r									
	(c) Methyl tertiary butyl ether (d) Di-tert-butyl ether												
43.	PCl ₃ reacts with water to form		•										
4.4	(a) PH ₃ (b) H ₃ PO ₄ and HCl	(c)	POCl ₃	(d)	H_3PO_4								
44.	Which of the following compounds is resistant to nucle	-opiiii	ic attack by hydroxyr ions?										

(c) Acetamide

(d) Diethyl ether

(a) Methyl acetate

(b) Acetonitrile

Chemistry

Given below are two statements labelled as Assertion (A) and Reason (R). Select the most appropriate answer from the options

- (a) Both A and R are true and R is the correct explanation of A.
- Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- A is false and R is also false. (d)
- **45. Assertion :** PhCCH₂Cl is more reactive than PhCH₂Cl.

Reason: Conjugation with carbonyl group much more effective than with simple alkene or benzene ring.

- 46. **Assertion :** Bond angle of H_2S is smaller than H_2O .
 - **Reason:** Electronegativity of the central atom increases, bond angle decreases.
- **47. Assertion :** Alkyl fluorides are prepared by heating AgF with alkyl chloride.
 - **Reason:** Because direct fluorination of alkanes occurs very slowly with rupture of C = C bonds.
- **48. Assertion :** Molarity of a solution in liquid state changes with temperature.
 - **Reason:** The volume of a solution changes with change in temperature.
- **49. Assertion**: Dinitrogen is inert at room temperature.

Reason: Dinitrogen directly combines with lithium to form ionic nitrides.

SECTION-C

This section consists of 6 multiple choice questions with an overall choice to attempt any 5. In case more than desirable number of questions are attempted, ONLY first 5 will be considered for evaluation.

50. Match the columns

Column -I

- (A) Mass percentage
- (B) Mass by volume
- (C) ppm
- (D) Volume percentage
- (a) A-(q), B-(p), C-(s), D-(r)
- (c) A-(r), B-(q), C-(s), D-(p)

Column-II

- Medicine and pharmacy (p)
- Concentration of pollutants in water (q)
- Industrial chemical application
- (s) Liquid solutions
- A-(s), B-(r), C-(p), D-(q)(b)
- A-(r), B-(p), C-(q), D-(s)
- **51.** Which of the following analogy is incorrect?
 - (a) Optically inactive amino acid: Glycine: Optically active protein: Lysine
 - (b) Essential amino acid: Lysine:: Non essential amino acid: Glycine
 - (c) Basic amino acid : Aspartate : : Acidic amino acid : Histidine
 - (d) Glucose: Pyranose:: Fructose: Furanose

Correct analogy for X::Y

- (a) $X : XeO_3 :: Y : XeOF_4$
- (c) $X : XeO_2F_2 :: Y : Xe$

- $X : Xe :: Y : XeO_3$
- $X : XeO_3 :: Y : XeO_2F_2$

Case Study: Read the following paragraph and answers the questions.

Alkyl halides are insoluble in water but soluble in organic solvents. The insolubility in water is due to their inability to form hydrogen bonds with water. Alkyl bromides and iodides are denser than water whereas alkyl chlorides and fluorides are lighter than water. Alkyl halides have higher boiling points than alkanes of comparable molecular weight. For a given halogen atom, the boiling points of alkyl halides increase with the increase in the size of the alkyl group.

- **53.** Which of the following is liquid at room temperature (b.p. is shown against it)?
 - (a) CH₂I (42 °C)
- (b) $CH_3Br(3 ^{\circ}C)$
- $C_2H_5Cl(12^{\circ}C)$
- CH₂F (-78 °C)

- **54.** Which of the following possesses highest melting point? (b) *m*-dichlorobenzene
 - (a) Chlorobenzene
- o-dichlorobenzene (c)
- *p*-dichlorobenzene

- 55. The decreasing order of boiling points of alkyl halides is
 - (a) RF > RCl > RBr > RI (b) RBr > RCl > RI > RF
- RI > RBr > RCl > RF
- RCl>RF>RI>RBr

	ANSWER KEYS																		
1	(b)	7	(a)	13	(b)	19	(d)	25	(a)	31	(c)	37	(b)	43	(b)	49	(c)	55	(c)
2	(b)	8	(a)	14	(b)	20	(b)	26	(b)	32	(d)	38	(c)	44	(d)	50	(d)		
3	(b)	9	(b)	15	(c)	21	(d)	27	(a)	33	(c)	39	(b)	45	(a)	51	(c)		
4	(a)	10	(d)	16	(c)	22	(a)	28	(a)	34	(a)	40	(d)	46	(c)	52	(b)		
5	(c)	11	(d)	17	(d)	23	(b)	29	(c)	35	(b)	41	(b)	47	(c)	53	(a)		
6	(a)	12	(d)	18	(d)	24	(d)	30	(a)	36	(c)	42	(d)	48	(a)	54	(d)		

- (b) Among the given crystals, only silicon exists as a covalent solid. It has diamond like structure.
- (b) In graphite, the electrons are spread out between the sheets
- **3. (b)** It is the most electronegative element. Hence, it strongly attract the electron pair in a covalent bond.
- 4. (a) In crystalline solid, there is perfect arrangement of the constituent particles only at 0 K. As the temperature increases the chance that a lattice site may be unoccupied by an ion increases. As the number of defects increases with temperature, solid changes into liquid.
- 5. (c) For ideal solution,

$$\Delta V_{mixing}$$
 = 0 and ΔH_{mixing} = 0 .

6. (a) Schottky defect is found in ionic solids.

7. **(a)**
$$\begin{array}{c} & \text{Br} \\ | \\ \text{CH}_3\text{CH}_2\text{C} = \text{CH} - \text{Cl} \\ 4 & 3 & 2 \\ 2 - \text{Bromo-1-chloro but-1-ene} \end{array}$$

8. (a)

10. (d)

- **11. (d)** Due to inter-molecular hydrogen bonding in alcohols boiling point of alcohols is much higher than ether.
- 12. (d) In graphite, the carbon atoms are arranged in regular hexagons in flat parallel layers.
- **13. (b)** The process of conversion of alkyl halides into alcohols involves substitution reaction.

$$\begin{array}{ccc} R \longrightarrow X \stackrel{OH^-}{\longrightarrow} R \longrightarrow OH \\ & \text{Alkyl halide} & \text{Alcohol} \end{array}$$

14. (b) An increase in temperature of the solution increases the solubility of a solid solute.

The amount of solute that dissolve depends on what type of solute it is.

For solids and liquid solutes, changes in pressure have practically no effect on solubility.

- **15. (c)** Ethyl alcohol has strongest hydrogen bonding due to large electronegativity difference.
- **16.** (c) Hybridisation in PCl₅ = $\frac{1}{2}(5+5+0-0)=5$; sp^3d
- 17. (d
- **18. (d)** Ethylene dichloride can be prepared by adding HCl to ethylene glycol (CH₂OH. CH₂OH).
- 19. (d) Due to resonance, the electron density increases more at ortho- and para-positions than at meta-positions. Further, the halogen atom because of its I effect has some tendency to withdraw electrons from the benzene ring. As a result, the ring gets somewhat deactivated as compared to benzene and hence the electrophilic substitution reactions in haloarenes occur slowly and require more drastic conditions as compared to those in benzene.
- **20. (b)** On heating, lead nitrate produces brown coloured nitrogen dioxide (NO₂) and lead (II) oxide.

$$2Pb(NO_3)_2 \xrightarrow{\Delta} 4NO_2 + 2PbO + O_2$$

- **21.** (d) CCl_4 is non-polar and $CHCl_3$ is polar.
- **22.** (a) Collectively these elements are called pnicogens and their compound pniconides.
- **23. (b)** Insulin is a biochemically active peptide hormone secreted by pancreas.
- (d) Metallic character increases down the group, Bi is most metallic

s-2

25. (a) Nitrogen does not show allotropy due to its small size and high electronegativity. The N–N bond is weak due to high inter–electronic repulsions among non-bonding electrons due to the small bond distance. Hence, it does not show allotropy.

26. (b) Positive deviations are shown by such solutions in which solvent-solvent and solute-solute interactions are stronger than the solute-solvent interactions. In such solution, the interactions among molecules becomes weaker. Therefore their escaping tendency increases which results in the increase in their partial vapour pressures. In pure methanol, there exists intermolecular H–bonding.

On adding benzene, its molecules come between ethanol molecules, thereby breaking H-bonds which weaken intermolecular forces. This results in increase in vapour pressure.

27. (a) Given
$$P_p = 80$$
 torr
$$P_Q = 60 \text{ torr}$$

$$P_{total} = P_p \times x_p + P_q \times x_q$$

$$= \left[80 \times \frac{3}{5} + 60 \times \frac{2}{5} \right] = 16 \times 3 + 12 \times 2$$

$$P_{total} = 48 + 24 = 72 \text{ torr}$$

- 28. (a) Density is directly related to molecular mass. Higher the molecular mass, higher will be the density of the compound. The order of molecular mass is benzene < chlorobenzene < dichlorobenzene < bromochlorobenzene
- **29.** (c) SF_4 has sea-saw shape as shown below:

It has trigonal bipyramidal geometry having sp^3d hybridisation.

- 30. (a) The sequence in which the α -amino acids are linked to one another in a protein molecule is called its primary structure.
- 31. (c) For S_N2 reaction polar aprotic solvent is needed.

- **33. (c)** Glass is amorphous solid.
- **34.** (a) The correct order of increasing bond length is $CH_3F < CH_3Cl < CH_3Br < CH_3I$

35. (b)
$$HF + XeF_6 \longrightarrow XeF_5^+ + HF_2^-$$

36. (c) If $H_2O = x$ mole Mass of x mole of $H_2O = 18x$ g Then urea = x mole

O
$$\parallel$$
 Mass of x mole of NH₂ – C– NH₂ = $60x$ g Total mass of the solution = $18x + 60x = 78x$ g

Chemistry

Mass % of urea =
$$\frac{60x}{78x} \times 100 = 76.92\%$$

- 37. (b) The solubility of alcohols depend on number of C-atoms of alcohols. The solubility of alcohols in water decreases with the increase in number of C-atoms of alcohol. As resulting molecular weight increases, the polar nature of OH bond decreases and hence strength of hydrogen bond decreases.
- **38.** (c) The acids which contain P-H bond have strong reducing properties. Thus, H₃PO₂ is a strong reducing agent due to the presence of two P-H bonds and one OH group

Hypophosphorus acid

- **39. (b)** In Na₂O, negative ions form the *ccp* arrangement so that each positive ion is surrounded by 4 negative ions and each negative ion is surrounded by 8 positive ions.
 - \therefore coordination no. of Na⁺ is 4 and that of O²⁻ is 8.
- **40. (d)** Bismuth forms metallic bonds in elemental state.
- **41. (b)** Since the compound is formed by hydration of an alkene, to get the structure of alkene remove a molecule of water from the alcohol.

$$\begin{array}{c} \text{CH}_3 \, \text{C} \, \text{H} \, \text{CH}_3 & \xrightarrow{-\text{H}_2\text{O}} \, \text{CH}_2 = \text{CHCH}_3 \\ \text{OH} \\ \text{Isopropyl alcohol} & \text{Propylene} \end{array}$$

- **42. (d)** The two components should be $(CH_3)_3CONa + (CH_3)_3CBr$. However, tert-alkyl halides tend to undergo elimination reaction rather than substitution leading to the formation of an alkene, $Me_2C = CH_2$
- 43. **(b)** $PCl_3 + H_2O \longrightarrow POCl_3 + 2HCl$ $POCl_3 + 3H_2O \longrightarrow H_3PO_4 + 3HCl$
- **44. (d)** Diethyl ether, being a Lewis base, is not attacked by nucleophiles, while all others contain electrophilic carbon, hence attacked by nucleophiles like OH⁻ ions.

O
$$\delta$$
-
CH₃- C - OCH₃

$$CH_3 - C \equiv N$$

Solutions s-3

$$CH_3$$
- C_2 C_2 C_3 - C_4 C_5 C_5 C_5 C_5 C_5 C_5 C_5 C_6 C_6 C_7 C_8 C_8 C_8 C_9 C

45. (a) α-halo carbonyl compounds (such as C₆H₅COCH₂Cl) are more reactive because conjugation with carbonyl group is more effective than simple alkene or benzene ring.

- **46. (c)** Bond angle of H₂S (92°) < H₂O (104°31). As the electronegativity of the central atom decreases, bond angle decreases. In the present case, S is less electronegative than oxygen. Thus, bond pairs in H₂S are more away from the central atom than in H₂O and thus repulsive forces between bond pairs are smaller, producing smaller bond angle.
- **47. (c)** alkyl fluorides are obtained by heating alkyl chloride or bromide in the presence of metallic fluorides like AgF or SbF₃. the reaction is known as Swartz reaction.

$$R - X + AgF/Hg_2F_2 \rightarrow R - F + AgX/Hg_2X_2$$

- 48. (a)
- **49. (c)** At higher temperatures, dinitrogen combines with metals to form ionic nitrides.
- 50. (d)
- (c) Histidine is basic amino acid while aspartate is acidic amino acid.

Y is not an oxyacid of xenon.

- **53.** (a) Boiling point of CH₃I is 42°C which indicates that it is liquid at room temperature. CH₃I is larger molecule so it has stronger vander Waal's force of attraction than others.
- **54. (d)** Para-dichlorobenzene has most symmetrical structure than others. It is found as crystalline lattice form, therefore, it has highest melting point (52°C) due to symmetrical structure.

55. (c) For the same alkyl group, the boiling points of alkyl halides decrease in the order :

This is because with the increase in size and mass of halogen atom, the magnitude of van der Waal's forces increases.